
J. Fluid Mech. (2001), vol. 437, pp. 337–365. Printed in the United Kingdom

c© 2001 Cambridge University Press

337

On the finite-amplitude steady convection in
rotating mushy layers

By P E T E R G U B A
Department of Geophysics, Faculty of Mathematics and Physics, Comenius University,

842 48 Bratislava, Slovakia

(Received 6 March 2000 and in revised form 12 December 2000)

This study concentrates on a relatively simple model of a mushy layer originally
proposed by Amberg & Homsy (1993) and later studied in further detail by Anderson
& Worster (1995). We extend this model to the case in which the system is in a state
of uniform rotation about the vertical. Of particular interest is to determine how the
rotation of the system controls the bifurcating convection with both the oblique-roll
planform and the planform of hexagonal symmetry. We find that two-dimensional
oblique rolls can be either subcritically or supercritically bifurcating, depending on
a pair of parameters (K1/CS ,T), where K1 measures how the permeability linearly
varies with the local solid fraction, CS relates the compositional difference between the
liquid and solid phases to the variation of composition throughout the mushy layer,
and the Taylor numberT gives a measure of the local Coriolis acceleration relative to
the viscous dissipation in a porous medium. The three-dimensional convection with
hexagonal symmetry is found to be transcritical. Furthermore, distorted hexagons
with upflow at the centres can be either subcritical or supercritical, depending on the
value of the Taylor number T.

1. Introduction
When a binary alloy solidifies directionally, a flat solidification front can become

morphologically unstable owing to constitutional supercooling (see e.g. Porter &
Easterling 1992). As a consequence of this supercooling, regions of coexisting liquid
and solid phases, referred to as ‘mushy’ regions, are often formed.

An inevitable feature of the solidification process in the mushy region of binary
mixture pertains to the preferential rejection of the lighter component of the mixture
into the liquid during solidification. This rejection induces compositional gradients
which, in combination with existing temperature gradients and the gravitational field,
may induce buoyancy-driven convection within the mushy layer. Convection in mushy
layers has received attention in recent years because of its common occurrence in
both industrial and geophysical applications, but also since it is interesting as a fluid-
dynamics phenomenon as well. A general review of previous works on this problem
has been given by Worster (1997).

Most of our understanding of the solidification process via the phase separation
within the mushy region is based on laboratory experiments (e.g. Copley et al. 1970;
Chen & Chen 1991; Tait & Jaupart 1992). Using aqueous solutions of ammonium
chloride, analogue systems for binary metallic alloys, it was established that the
formation of small imperfections, or ‘freckles’, is a result of convection through
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chimneys in the mushy layer. Chimneys are localized vertical channels of zero solid
fraction from which emanate plumes of relatively dilute fluid.

A number of complementary theoretical approaches have been followed to advance
the understanding of complex interactions occurring during the solidification of binary
alloys. A mathematical model to examine the stability of convective flow in a limiting
case involving no interaction between convection and solidification in the mushy layer
has been developed by Fowler (1985). Worster (1992) analysed the linear stability of
the coupled liquid and mush regions and found two distinct modes of convective
instability: one is the boundary-layer mode corresponding to finger-like convection
in a compositional boundary layer at the mush-liquid interface, and the other is
the mushy-layer mode in which convection is initiated within the mushy layer. The
mushy-layer mode of convective instability has been inferred to be a precursor to
the formation of chimneys. Emms & Fowler (1994) analysed the linear stability
of convection in a model in which the mushy layer was assumed to be of fixed
permeability and the convection in the liquid region was supposed to have a finger-
like structure. Their analysis implied that the onset of convection in the mushy layer
is only slightly influenced by the convection in the liquid region above the mush.

Linear stability analyses allow one to find the critical conditions at which convective
instabilities of infinitesimal amplitudes first occur. Nevertheless, it was anticipated
(Fowler 1985; Worster 1992) that the mushy-layer mode of convective instability
would be subcritically unstable. This issue has been recently confirmed by the analysis
of Amberg & Homsy (1993) and studied in further detail by Anderson & Worster
(1995). Amberg & Homsy (1993) developed a relatively simple model in which the
mushy layer was dynamically isolated from the liquid region above and the solid
region below the mushy layer, and the position of mush–liquid interface was taken to
be fixed. They performed a weakly nonlinear analysis considering steady convecting
states in the mushy layer. Both two-dimensional roll and three-dimensional hexagonal
patterns were investigated. Their analysis revealed that the bifurcation to rolls could
be either supercritical or subcritical, and the bifurcation to hexagons was always
transcritical. Anderson & Worster (1995) extended the analysis of Amberg & Homsy
(1993) with a particular interest to determine the stability of steady convecting states
in the weakly nonlinear limit. A key finding of their analysis was a set of coupled
evolution equations. An analysis of these equations enabled them to reveal the
possibility of an oscillatory convective instability in the system, the nature of which
was identified and explored in their later paper (Anderson & Worster 1996).

Since freckles are known to reduce the mechanical quality of the final solidified
castings, much attention is currently focused on the question of how to avoid their
deleterious effects in industrial casting processes. Experiments designed to eliminate
the freckle formation have been performed. Sample & Hellawell (1982, 1984) were
the first to consider a rotation of the solidifying system, implemented in various ways,
as possible means of suppressing freckle formation. In particular, they conducted
experiments using NH4Cl–H2O and Pb–Sn alloy systems cooled from below to
explore the effects of rotation about both inclined and vertical axes, with respect
to the orientation of the gravity field. In the case of an inclined rotation axis, they
discovered that convection in the form of buoyant plumes emanating from chimneys
can be effectively suppressed for certain values of inclination angle and of uniform
angular velocity. In contrast, however, they observed no such effect in the case of
rotation about the vertical axis; the development of freckles was then essentially
identical to that of the non-rotating case. Note that in these experiments, the rotation
was present throughout the time of solidification.
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More recently, Claßen, Heimpel & Christensen (1999) carried out experiments on
an aqueous solution of ammonium chloride in a cylindrical annulus cooled from
below. Similarly to Sample & Hellawell (1984), by rotating the base about its vertical
axis, they were able to investigate the effects of imposed rotation on the overall
behaviour of the system. Their experiments showed that a helical motion of the
plumes in the liquid region, which is known to be only slightly developed in the
non-rotating case, was strengthened by the presence of rotation, causing the plumes
to be oriented nearly horizontally. As a result, the plumes became unstable and broke
up into small buoyant blobs rising in the melt. Although their aim was primarily to
elucidate the effect of rotation within the liquid region above the mushy layer, they
concluded also, like Sample & Hellawell (1984), that chimney convection within the
mushy layer was little affected by the presence of rotation.

The observed experimental facts might lead one to suspect that the rotation about
the vertical axis has no effect on chimney convection at all. However, it must be
remembered that both studies reported observations relating to strongly nonlinear
regimes of chimney convection only; that is, they say nothing about how the rotational
constraint, whether with inclined rotation axis or not, affects the onset of chimney
convection within the mushy layer. In the present analysis, we shall discover, among
other results, how the nonlinear development of steady rotating convection affects
the local solid fraction within the mushy layer and draw conclusions regarding the
way in which the onset of nonlinear chimney convection can be suppressed, despite
the lack of any inclination of the rotation axis.

In this paper, we present an extension of Amberg & Homsy’s (1993) study to the
case where the mushy layer is in a state of uniform rotation about the vertical. We
study the effects of an imposed rotational constraint on the finite-amplitude steady
convecting states which arise when the Rayleigh number is slightly in excess of its
critical value. In particular, the case of two-dimensional convection in the form of
oblique rolls, and the case of three-dimensional convection with hexagonal symmetry
are considered. We wish to establish how the qualitative results relating to effects
of non-symmetries (see Amberg & Homsy 1993; Anderson & Worster 1995) in the
system are altered by the presence of rotation, by identifying the explicit functions
of the rotation rate which determine the nature of bifurcations to finite-amplitude
convection. We attempt to address the question of particular physical mechanisms
through which the rotational constraint manifests itself in the flow at both the linear
and weakly nonlinear stages of the system.

The plan of this paper is the following. In § 2, we formulate our problem mathe-
matically and take a particular asymptotic limit of the governing equations in order
to carry out calculations explicitly. The weakly nonlinear motions are described by
the analysis of § 3, the results of which are divided, for clarity, into the case of two-
dimensional convection in the form of oblique rolls and that of three-dimensional
convection with hexagonal symmetry. The results are discussed in § 4. Finally, we give
some concluding remarks in § 5.

2. Formulation
We consider a physical system in which a mushy layer is held between a completely

solid region at the bottom and a completely liquid region at the top (see figure 1).
The macroscopic solidification velocity V is assumed to be constant. We adopt the
further simplification that the mushy layer is dynamically decoupled from the rest of
the system (see Amberg & Homsy 1993; Anderson & Worster 1995) by taking the
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Figure 1. A schematic diagram of the mushy layer system. The mushy layer is held between a solid
region at the bottom and a liquid region at the top. The top and bottom boundaries of the mushy
layer are taken to be isothermal; the boundary z = 0 is kept at the eutectic temperature TE , and
the boundary z = d at the liquidus temperature TL(C0). The mushy layer is growing at a constant
speed V in the vertical direction. The whole system is assumed to be in a state of uniform rotation
with angular velocity Ω0 about the vertical.

top and bottom boundaries of the mushy layer to be impermeable and isothermal.
Namely, in a Cartesian frame of reference (x, y, z) moving at the solidification velocity
V in the z-direction, the boundary z = 0 is kept at the eutectic temperature T = TE ,
while the boundary z = d is kept at the liquidus temperature TL(C0) and is thought
to be the surface through which the mixture with composition C0 is supplied. The
solidifying system is assumed to be in a state of rotation at uniform angular velocity
Ω0 = Ω0ẑ, where ẑ is the vertical unit vector.

The temperature T and composition C of the liquid in the mushy layer are required
to satisfy the liquidus relationship T = TL(C) which is assumed to be linear according
to

T = TL(C0) + Γ (C − C0), (2.1)

where Γ is a constant slope of the liquidus curve at C = C0.
The liquid is assumed to be Newtonian with a linearized equation of state

ρl = ρ0[1 + β(C − C0)], (2.2)

where ρ0 is a reference density, β = β∗ − α∗Γ , and α∗ and β∗ are the constant
expansion coefficients for heat and solute, respectively. The compositional effect
usually dominates the thermal effect so that β is typically positive and leads to
convection driven primarily by compositional buoyancy.

We start with a non-dimensional form of the governing equations which is most
similar to that of Worster (1992) and later used by Amberg & Homsy (1993). In
this formulation all material properties are assumed to be independent of phase
and constant. The dependent variables are scaled as follows. The fluid velocity is
scaled with the prescribed solidification velocity V , length and time with the thermal-
diffusion lengthscale and timescale, κ/V and κ/V 2, and pressure with κµ/Π(0). Here,
κ is the thermal diffusivity, µ is the dynamic viscosity of the liquid and Π(0) is the
reference value of permeability of the mushy layer. The dimensionless variable for
the temperature and concentration is defined by

θ = [T − TL(C0)]/∆T = (C − C0)/∆C, (2.3)

where ∆T = Γ∆C = TL(C0)−TE , ∆C = C0−CE and CE is the eutectic composition.
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The dimensionless equations representing the conservation of heat, solute, momen-
tum and mass in the frame of reference which is both translating with the eutectic
front and co-rotating with the mushy layer then assume the forms(

∂

∂t
− ∂

∂z

)
(θ − Stφ) + u · ∇θ = ∇2θ, (2.4a)

(
∂

∂t
− ∂

∂z

)
[(1− φ)θ + Cφ] + u · ∇θ = 0, (2.4b)

K(φ)u = −∇p− Raθẑ +
√Tu× ẑ, (2.4c)

∇ · u = 0. (2.4d)

The dependent variables in these equations are the temperature θ, the local solid
fraction φ, the Darcy fluid velocity u and the reduced pressure

p = [p∗ − 1
2
ρ0Ω

2
0(x2 + y2)]Π(0)/κµ,

where p∗ is the dimensional hydrodynamic pressure of the interstitial fluid in the
non-rotating system. The function K(φ) in equation (2.4c) stands for the variations of
permeability Π with the local solid fraction φ and is defined by K(φ) = Π(0)/Π(φ).
We shall follow Worster (1992) in assuming such a constitutive expression for Π(φ)
in which the permeability remains finite as the solid fraction approaches zero (see
equation (2.15) below).

The dimensionless parameters introduced in the governing equations (2.4) are the
Stefan number, the concentration ratio, the Rayleigh number and the Taylor number,

St =
L
cl∆T

, C =
C ′S − C0

C0 − CE , Ra =
β∆CgΠ(0)

νV
, T =

(
2Ω0Π(0)

(1− φ0)ν

)2

, (2.5a–d)

respectively, where L is the latent heat of fusion, cl is the specific heat, C ′S is the
composition of solid phase forming the dendrites and g is the acceleration due to
gravity. The Stefan number St expresses the importance of the latent heat relative
to the specific heat release. The concentration ratio C represents the compositional
contrast between solid and liquid phases compared to the characteristic variation of
composition across the mushy layer. Note that, as we shall consider later, C will
become large if the initial composition C0 is close to the eutectic composition CE . The
Rayleigh number Ra relates the destabilizing effect of compositional buoyancy to the
stabilizing influence of viscous dissipation in the porous medium. The Taylor number
T measures the ratio of the local Coriolis acceleration associated with the imposed
rotation relative to the viscous dissipation in the mushy layer. We fix the local solid
fraction at a constant value φ0 in the term modelling the effect of rotation, where φ0

is thought of as a reference value of the local solid fraction in the mushy layer (cf.
a definition of the Taylor number in the context of rotating convection in passive
porous media considered by e.g. Nield & Bejan 1999; Nield 1999 and particularly
Vadasz 1998a, b). Note that this does preclude the possibility of a further nonlinear
interaction between perturbations to the local solid fraction and convection associated
with the Coriolis term; to follow this demands an enhanced computing requirement.
In order to systematically isolate and understand specific key interactions present in
the system, it seems sensible at this stage to address the problem with the fixed local
solid fraction first.

The imposed dimensionless boundary conditions to be applied to the dependent
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variables are

θ = −1, w = 0 at z = 0, (2.6a, b)

θ = 0, w = 0, φ = 0 at z = δ, (2.7a–c)

where δ = d/(κ/V ) is the dimensionless thickness of the mushy layer and w is the
z-component of the fluid velocity u. Conditions (2.6) express that the temperature is
equal to its eutectic value and the vertical component of the flow is zero on the bottom
boundary of the mushy layer z = 0. Conditions (2.7) state that the temperature is
equal to the liquidus temperature at the initial composition, the vertical component
of the flow is zero and the solid fraction is continuous on the top boundary of the
mushy layer z = δ. For a more detailed discussion of the merits of these boundary
conditions the reader is referred to Anderson & Worster (1995).

Following Amberg & Homsy (1993), we study a limit in which the system is close
to the eutectic point by letting C = CS/δ with CS = O(1) as δ → 0, where we assume
that the thickness of the mushy layer is much less than the diffusive lengthscale.
Further, we assume that the Stefan number St = O(1) as δ → 0. Physically, this
corresponds to the situation where the latent heat of solidification is comparable to
the heat associated with the typical variations of temperature within the mushy layer.

In the present analysis, we wish to include the effects of the rotational constraint
imposed on the system, and therefore have to relate the order of magnitude of the
Coriolis force term to the rest of the terms appearing in the momentum equation
(2.4c). For this purpose we consider the particular asymptotic limit where√T = O(1) as δ → 0, (2.8)

which, together with the particular rescalings of the problem introduced below,
will imply that the Coriolis force is a part of the dominant momentum balance
between the pressure gradient, and the buoyancy and Darcy forces. This is, in
fact, our motivation for taking the above assumption (δ → 0,

√T = O(1)). We
note that for the ammonium-chloride–water system, if the characteristic value of
the permeability Π(0) = 2.31 × 10−3 cm2 (Tait & Jaupart 1992) and the kinematic
viscosity ν = 0.95×10−2 cm2 s−1 (Emms & Fowler 1994) are considered, this limit can
be accomplished by values of the angular velocity Ω0 about 2 rad s−1 (with φ0 set to
zero in anticipation of considering the limit of small δ).

Analysis of the control balances in equations (2.4) for these asymptotic limits then
indicates the following rescalings of the problem

(x, y, z) = δ(x̄, ȳ, z̄), R2 = δRa, (2.9a, b)

θ = θB(z̄) + εθ̂(x̄, ȳ, z̄), (2.9c)

φ = φB(z̄) + εφ̂(x̄, ȳ, z̄), (2.9d)

u = 0 + ε
R

δ
û(x̄, ȳ, z̄), (2.9e)

p = RpB(z̄) + εRp̂(x̄, ȳ, z̄), (2.9f)

where ε is a small perturbation parameter to be determined by weakly nonlinear
solutions. The subscript B denotes the basic-state solutions which can vary only
vertically, and the caret is used for the perturbation variables which can vary in both
the horizontal and vertical directions.

The governing equations and boundary conditions for the particular asymptotic
limits described above admit steady basic-state solutions which correspond to zero
fluid velocity. These solutions can be obtained as series expansions in powers of δ,
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yielding the following expressions:

θB = −(1− z̄) + δ 1
2
z̄(1− z̄) + δ2

(
− 1

12
z̄(1− z̄)(2z̄ − 1) +

St

2CS
z̄(1− z̄)

)
+ O(δ3),

(2.10a)

φB ≡ δφ̄B = δ
1

CS
(1− z̄) + δ2

(
− 1

C2
S

(1− z̄)2 − 1

2CS
z̄(1− z̄)

)
+ O(δ3). (2.10b)

The equation of continuity, (2.4d), can be eliminated by introducing the following
general representation:

û = ∇× (∇× ẑχ̂) + ∇× ẑψ̂ ≡ ξχ̂+ ζψ̂ (2.11)

for the solenoidal velocity field û, where the symbols ξ and ζ, representing the corre-
sponding vector operators, have been introduced only for notation convenience. Then,
restricting our attention to the case of steady convection, the equations governing the
perturbations are readily obtained from (2.4a, b, c),

δ
∂

∂z̄
(θ̂ − Stφ̂) + R

dθB
dz̄

∆2χ̂+ ∇2θ̂ = εR(ξχ̂+ ζψ̂) · ∇θ̂, (2.12a)

δ
∂

∂z̄

(
(1− δφ̄B)θ̂ − θBφ̂− εφ̂θ̂ +

1

δ
CSφ̂

)
+ R

dθB
dz̄

∆2χ̂ = εR(ξχ̂+ ζψ̂) · ∇θ̂, (2.12b)

ζ · [(ξχ̂+ ζψ̂)K(δφ̄B + εφ̂)] =
√T ∂

∂z̄
∆2χ̂, (2.12c)

ξ · [(ξχ̂+ ζψ̂)K(δφ̄B + εφ̂)] = R∆2θ̂ −
√T ∂

∂z̄
∆2ψ̂, (2.12d)

where ∆2 denotes the two-dimensional Laplacian operator in the horizontal plane,
∆2 ≡ ∇2 − (ẑ · ∇)2. Equations (2.12c) and (2.12d) for the scalar functions ψ̂ and χ̂,
respectively, have been obtained by taking the vertical components of the curl and of
the (curl)2 of the momentum equation (2.4c). The mathematical formulation of the
problem is completed by the boundary conditions on the perturbation variables

θ̂ = 0, χ̂ = 0 at z̄ = 0, (2.13a, b)

θ̂ = 0, χ̂ = 0, φ̂ = 0 at z̄ = 1. (2.14a–c)

An important feature of the dynamics of the mushy layer is the variation of the
permeability with the local solid fraction. Here, since the basic-state solid fraction is
of O(δ) and the perturbations to the solid fraction will also be expected to be small
according to the weakly nonlinear theory, we follow Amberg & Homsy (1993) in
expanding the function K(φ) in a regular series for φ� 1,

K(φ) = 1 +K1φ+K2φ
2 + O(φ3). (2.15)

Note that, with this expression, the particular scalings presented above allow us to
treat the problem analytically with the incorporation of the permeability variations as
perturbations at higher-order approximations of the perturbation theory. Note also
that the coefficient K1 in equation (2.15) has to be positive in order to ensure the
decreasing of the permeability Π(φ) with the increasing solid fraction φ.
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3. Finite-amplitude steady convection
Following a standard weakly nonlinear method (see e.g. Malkus & Veronis 1958;

Busse 1967), our main aim is to derive some fundamental results of the weakly non-
linear theory which are basic to the understanding of the behaviour of perturbations
when nonlinear interactions become significant.

We assume that the perturbation variables and the bifurcation parameter can be
expanded in powers of ε in the forms

θ̂ = θ1(x̄, ȳ, z̄) + εθ2(x̄, ȳ, z̄) + O(ε2), (3.1a)

φ̂ = φ1(x̄, ȳ, z̄) + εφ2(x̄, ȳ, z̄) + O(ε2), (3.1b)

χ̂ = χ1(x̄, ȳ, z̄) + εχ2(x̄, ȳ, z̄) + O(ε2), (3.1c)

ψ̂ = ψ1(x̄, ȳ, z̄) + εψ2(x̄, ȳ, z̄) + O(ε2), (3.1d)

R = R0 + εR1 + ε2R2 + O(ε3). (3.1e)

The thickness of the mushy layer δ and the perturbation amplitude ε are two small
parameters in our analysis. From the formal point of view, an asymptotic relation
between these parameters has to be assumed. Referring to Amberg & Homsy (1993),
we take a distinguished limit δ = αε, where α = O(1) as ε → 0. Note that as the
Rayleigh number R, or more exactly the originally defined Ra, is an externally given
parameter, the expression (3.1e) defines the perturbation amplitude ε.

These forms are now substituted into the perturbation equations (2.12) and the
coefficients of the terms εn (n = 0, 1, . . .) are successively equated to zero. There results
a set of linear equations for the unknown functions (θn, for example) which may be
solved sequentially. The full details of the analysis are rather tedious and therefore
are not included here. Instead, only the principal results along the way to obtaining
the solvability conditions required for the existence of higher-order solutions are
recorded. Note that in the present paper we do not address the question of stability
of the finite-amplitude convecting states in the mushy layer. Thus, we do not obtain
amplitude equations, describing the evolution of small-amplitude convecting states,
from the particular solvability conditions; in the present analysis these conditions
give directly an adjustment of free parameters appearing in the expansion of the
bifurcation parameter R (see e.g. Manneville 1990).

Plainly, the first step in our analysis will be that of investigating the linear stability
properties of basic-state solutions (2.10). It is perhaps worth noting here that the
resulting linear stability problem, correct to O(δ0), will be degenerate. Formally, this
indeterminacy is associated with the existence of distinct solutions which correspond
to the same eigenvalue of the linear problem. In the analysis presented below, we
consider two solutions to the linearized problem of (2.12) corresponding to the
convection in the form of two-dimensional oblique rolls and the three-dimensional
convection with hexagonal symmetry. By performing the weakly nonlinear analysis
we determine the qualitative properties of these steady convecting states beyond the
range of validity of the linear stability theory.

3.1. Two-dimensional convection in the form of oblique rolls

We first consider the case of two-dimensional solutions to the perturbation equations
(2.12) which are independent of ȳ and which, to the leading order, correspond to
convection in the form of oblique rolls. Note that the flow is two-dimensional in that
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the variation of dependent variables with ȳ vanishes, despite the existence of all three
components of the flow.

The first equations arise from the coefficients of ε0, and correspond to the linear
stability problem. The appropriate solutions to these equations take the form

θ1 = − sin (πz̄) cos (kx̄), (3.2a)

φ1 = − 1

CS

π2 + k2

π
[1 + cos (πz̄)] cos (kx̄), (3.2b)

χ1 =
π2 + k2

R0k2
sin (πz̄) cos (kx̄), (3.2c)

ψ1 =
√Tπ(π2 + k2)

R0k2
cos (πz̄) cos (kx̄), (3.2d)

where the Rayleigh number R0 at this order is given by

R2
0 =

1

k2
(π2 + k2)[π2(T+ 1) + k2], (3.3)

and k is the wavenumber of a particular perturbation in the x̄-direction. Minimizing
R0 with respect to k we can readily find the critical Rayleigh number, R0c, and the
corresponding wavenumber, kc. These are given by

R0c(T) = π(
√T+ 1 + 1), kc(T) = π(T+ 1)1/4, (3.4a, b)

respectively, and we fix R0 and k at these values in our further analysis.
In the non-rotating case, the critical Rayleigh number and its minimizing wavenum-

ber are constant, R0c = 2π and kc = π. They, as well as the solutions for the thermal
and flow fields, are identical to those studied by Palm, Weber & Kvernvold (1972) in
the context of convection in a non-reacting porous medium. In the rotating case, the
critical Rayleigh number and corresponding wavenumber depend on T; the effect
of rotation is, to order δ0, to increase R0c and to decrease the horizontal scale of
convection cells. In this case, we recover exactly the critical values for the problem of
rotating convection in a non-reacting porous layer as considered by Palm & Tyvand
(1984) and Vadasz (1998a).

The Rayleigh and Taylor numbers are the sole dimensionless parameters controlling
convection in the mushy layer. It is instructive to consider the means by which the
Rayleigh number was established. A useful insight into this can be obtained from the
equation which results from multiplying the perturbation momentum equation by û
and averaging over the convection cell. This yields

0 = 〈K(δφ̄B + εφ̂)û2〉+ R〈θ̂ŵ〉, (3.5)

where the angular brackets indicate the appropriate averaging. The first term on the
right-hand side of this relation represents the rate of effective viscous dissipation in
the porous medium, which is balanced by the rate of release of potential energy. To
the leading-order approximation, this relation can be evaluated to become

0 =
π4

4R2
0c

[T(
√T+ 1 + 3) + 4(

√T+ 1 + 1)]− π2

4
(
√T+ 1 + 1). (3.6)
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This relation determines the critical Rayleigh number R0c and is identical to (3.4a).
Hence, the eigenvalue equation is a statement that a balance between the rate of
potential energy release and the rate of effective viscous dissipation in the porous
medium is achieved by the fluid element at the onset of linear instability.

The flow field determined by the scalar functions (3.2c) and (3.2d) corresponds to
the well-known case of two-dimensional steady convection in the form of oblique
rolls. Owing to the rotation of the system, the local Coriolis acceleration induces
a component of the flow which is parallel to the isolines of composition and of
local solid fraction in the horizontal planes, i.e. the v1 component of the flow.
For this reason, we refer to the convection as occurring in oblique rolls, the word
‘oblique’ emphasizing that the streamlines of the flow are confined to the planes
oriented at oblique angles to the axes of convection rolls. An account of such
convection pattern can be found in Veronis (1959). The leading-order perturbation
to the solid fraction (3.2b) leads to the formation of vertically oriented channels (in
x̄, z̄-planes) corresponding to the maximum reduction of the basic-state solid fraction.
The horizontal locations of these channels coincide with the positions where the
upward flow takes its maximum values and is relatively cold and maximally depleted
of solute.

To this point, the derivation of various terms of (3.1) has been relatively straight-
forward. However, when we consider the coefficients of ε1, we obtain a set of in-
homogeneous equations in which the homogeneous terms (proportional to θ2, φ2, χ2

or ψ2) are linearly dependent, because they are identical to those used to obtain the
leading-order solutions (3.2). We find that the existence of solutions to these equations
requires that

R1 = αR1δ, (3.7)

where

R1δ =
π

4

(
√T+ 1 + 1)(2−√T+ 1)√T+ 1

K1

CS
− π

2
(
√T+ 1 + 1)

St

CS
. (3.8)

Using this expression, we are now able to determine the solutions at this order.
The full expressions are rather complicated and therefore we do not record them
here.

We are now in a position to proceed to the next order. We find that the perturbation
equations at O(ε2) are soluble only if

R2 = α2R2δ + R2ε, (3.9)

where

R2δ = a(T)
K2 −K1

C2
S

+ b(T)
St

C2
S

− c(T)

(
K1

CS

)2

− d(T)
K1St

C2
S

+e(T) + f(T)

(
St

CS

)2

− h(T)
K1

CS
, (3.10a)

R2ε = −p(T)
K1

CS
− q(T)

(
K1

CS

)2

+ r(T)
K2

C2
S

+ s(T) (3.10b)
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with

p(T) =
π3

16
(−T+ 3

√T+ 1 + 1)

√T+ 1 + 1√T+ 1
, (3.11a)

q(T) =
π3

288
[−16T3 −T2(97

√T+ 1− 25) + 3T(29
√T+ 1 + 83)

+192(
√T+ 1 + 1)]

√T+ 1 + 1

(T+ 1)3/2
, (3.11b)

r(T) =
π3

32
[−T(7

√T+ 1− 8) + 22(
√T+ 1 + 1)]

√T+ 1 + 1√T+ 1
, (3.11c)

s(T) =
π3

16
(
√T+ 1 + 1)2. (3.11d)

Expressions for the functions a(T)–f(T) and h(T) appearing in (3.10a) are given in
the Appendix. Here, we have used the notation in which the functions a(T)–f(T),
h(T), and p(T)–s(T) possess a property that a(0)–f(0), h(0), p(0), and q(0)–s(0) are
positive numbers corresponding to the coefficients a–f, g, h, and k–m, respectively,
in the analysis of Amberg & Homsy (1993). The new important results here are the
explicit expressions for these particular functions which represent the physical effects
associated with the imposed rotation of the system.

The complete expression for the Rayleigh number R then takes the form

R = (R0c + δR1δ + δ2R2δ + · · ·) + ε2R2ε + · · · . (3.12)

Clearly, the terms R1δ and R2δ represent respectively the O(δ) and O(δ2) corrections
to the critical Rayleigh number R0c. Note that this expansion contains no term of
O(ε1). Hence, the sign of R2ε determines whether the bifurcating convection with a
two-dimensional oblique-roll pattern is supercritical or subcritical. A more detailed
discussion of solvability conditions presented in this section is contained in § 4.

3.2. Three-dimensional convection with hexagonal symmetry

In this section, we are concerned with a more general case of three-dimensional
convection in the rotating mushy layer. In particular, we identify weakly nonlinear
solutions to the system (2.12) which correspond, to the leading order, to steady
convecting states with the planform of hexagonal symmetry.

At the leading order of ε, O(ε0), we obtain solutions of the form

θ1 = − sin (πz̄)η(x̄, ȳ), (3.13a)

φ1 = − 1

CS

π2 + k2

π
[1 + cos (πz̄)]η(x̄, ȳ), (3.13b)

χ1 =
π2 + k2

R0k2
sin (πz̄)η(x̄, ȳ), (3.13c)

ψ1 =
√Tπ(π2 + k2)

R0k2
cos (πz̄)η(x̄, ȳ), (3.13d)

where the two-dimensional planform which determines the hexagonal symmetry of
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these solutions is given by

η(x̄, ȳ) = cos (kȳ) + 2 cos
(

1
2

√
3 kx̄

)
cos
(

1
2
kȳ
)
. (3.14)

Since there is degeneracy in the linear problem (see the note above), the critical
Rayleigh number R0c and corresponding wavenumber kc are identical to those given
by (3.4a, b) in the case of rolls. Again, we fix R0 and k at their critical values
throughout the further analysis.

The cellular structure of the flow field determined by (3.13c) and (3.13d) is well
known and its detailed analysis can be found elsewhere. We remark here only that
the boundaries of the regular hexagonal cells are distorted by the imposed rotation of
the system. For a detailed description of this cell distortion as well as a corresponding
perspective sketch of the spiral path of a fluid element in such a convection cell the
reader is referred to Veronis (1959). The horizontal dependences of the perturbations
on the temperature field θ1 and solid fraction φ1 are of the same form as those of
the vertical flow w1. Therefore, taking into account particular vertical dependences of
these perturbations, the isolines in the horizontal planes of both negative (positive)
θ1 and φ1 are qualitatively similar to those of positive (negative) w1.

The analysis proceeds in the same way as outlined in the preceding section for rolls.
We now find that the solvability condition at O(ε1) implies

R1 = αR1δ + R1ε, (3.15)

where R1δ has the same form as in the case of rolls (see equation (3.8)) and

R1ε =
π2

4

(T− 2
√T+ 1− 1)(

√T+ 1 + 1)√T+ 1

K1

CS
. (3.16)

Thus, we find that the complete expansion for the Rayleigh number can be expressed
as

R = (R0c + δR1δ + · · ·) + εR1ε + · · · , (3.17)

so that the bifurcation to the three-dimensional convection with hexagonal symmetry
is, in general, transcritical. The important result here is that R1ε can be positive,
negative or zero. This suggests that the hexagonal convection with upflow at the
centres can be either subcritically or supercritically bifurcating, depending on the
strength of the imposed rotational constraint. Note that the sign change in R1ε was
not possible in the non-rotating problem studied by Amberg & Homsy (1993); R1ε

was always negative and so the bifurcation to regular hexagons with upflow at the
centres was subcritical in any case. The parameter regime where these particular
results apply is determined in the next section.

4. Discussion
The solvability conditions (3.7) and (3.9) for the two-dimensional oblique-roll

solution, and (3.15) for the hexagonal solution reveal a number of interesting and
important results regarding the nature of the onset of instability to infinitesimal
steady convection as well as the onset of finite-amplitude steady motions in the
rotating mushy layer. These results are discussed in detail below.

There are some possibilities for checking the results of our analysis. ForT = 0, the
case of a non-rotating mushy layer has to be recovered, which for the two-dimensional
roll and hexagonal patterns was reported by Amberg & Homsy (1993). In the rotating
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case, T > 0, there are two previous studies which are appropriate for testing our
results. First, Vadasz (1998a) performed both linear and weakly nonlinear stability
analyses of two-dimensional rotating convection in a passive porous medium with
uniform permeability; our system corresponds to this problem in the limit δ → 0.
Second, in the case of setting ε = 0, the problem of linear stability in the rotating
mushy layer has to be recovered; this was recently studied by Guba & Bod’a (1998).

4.1. Two-dimensional convection in the form of oblique rolls

4.1.1. Linear stability results

To discuss the properties of the roll solutions presented in § 3.1, we focus first on
the case of setting ε = 0 in these solutions. This particular case recovers the results
of the linearized theory.

For T = 0, the leading-order, first and second correction terms to the linear
Rayleigh number reduce to

R0c = 2π, (4.1a)

R1δ =
π

2

K1

CS
− π St

CS
, (4.1b)

R2δ =

(
π

24
− 1

16π

)
−
(
π

12
− 3

8π

)
K1

CS
+
π

3

K2 −K1

C2
S

−
(

5π

48
+

1

16π

)(
K1

CS

)2

+

(
π

2
+

4

π

)
St

C2
S

+
3π

4

(
St

CS

)2

− π

4

K1St

C2
S

. (4.1c)

These results should be in an agreement with the linear stability results for the
non-rotating problem in Amberg & Homsy (1993) (see their equations (3.3d), (3.4)
and (3.5b)). However, note that the numerical values of coefficients a, c and g
in the expression for R2δ were incorrectly given as a ≈ 0.728 888, c ≈ 0.232 244
and g ≈ 0.356 825 in table 1 of their paper. These should equal to a ≈ 1.047 198,
c ≈ 0.347 144 and g ≈ 0.142 433, as revealed by the values of the corresponding
functions a(T), c(T) and h(T) at T = 0 in the present analysis (G. Amberg, private
communication, 1997).

For a later comparison with the linear stability results for the rotating problem, it
is worth noting some properties of the results given by equations (4.1). It is clear from
(4.1a) that the leading-order, O(δ0), value of the linear Rayleigh number for the onset
of infinitesimal steady convection is constant. From equation (4.1b) it follows that
the linear Rayleigh number, correct to O(δ1), decreases linearly as the Stefan number
St increases so that the system becomes more unstable as St increases. Further, the
variation in the linear Rayleigh number with the linear measure of the permeability
variations K1 is characterized by stabilizing the system when K1 increases. Note also
that increasing K1 has the effect of decreasing the permeability of the mushy layer.
The effect of variations in the compositional ratio CS , or, turning back to the original
unscaled variable, in C (C = CS/δ), on the linear Rayleigh number is determined by
the strength of K1 relative to St according to (4.1b); when K1 > 2St, we see that
increasing C represents a destabilizing effect whereas it tends to stabilize the system
when K1 < 2St.

When the rotational constraint is present in the system (T > 0) and still supposing
that ε = 0, we obtain, in fact, the solutions to the linear stability problem in the
rotating mushy layer. An analysis of such a problem using the same physical model
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of the mushy layer as the model considered here was recently carried out by Guba &
Bod’a (1998). Although they adopted a different scaling for the Stefan number, namely
(in their notation) S = S̄/δ where S̄ = O(1) as δ → 0 (see also Anderson & Worster
1995), it is possible to compare their results with the results of the present study.
In order to make this comparison, we reconsider their results for the leading-order
and first correction terms to the linear critical Rayleigh number of steady mode of
instability (see the real part of their equation (3.6)) in which we take k = π(T+ 1)1/4,
S̄ = δSt, Ω ≡ 1 + S̄/CS = 1 + δSt/CS and find that

R = π(
√T+ 1 + 1) + δ

[
π

4

(
√T+ 1 + 1)(2−√T+ 1)√T+ 1

K1

CS
− π

2
(
√T+ 1 + 1)

St

CS

]

+δ2

[(
π

4
+

2

π

)
(
√T+ 1 + 1)

St

C2
S

+
3π

8
(
√T+ 1 + 1)

(
St

CS

)2

+
π

8

(
√T+ 1 + 1)(

√T+ 1− 2)√T+ 1

K1St

C2
S

]
+ O(δ2). (4.2)

We see that this expression is correct to O(δ) and is in agreement with the results
of the present analysis (see equations (3.4a) and (3.8) above). The O(δ2) terms that
appear in this expression should be compared with the particular terms contained
in (3.10a) of the present analysis. Note that it is not possible to recover all of the
O(δ2) contributions since the linear stability analysis by Guba & Bod’a (1998) was
performed to obtain the results correct to O(δ1) only.

Even though the formal solution to the linear stability problem in the rotating
mushy-layer system was given in our earlier paper, we still need simple physical
arguments to explain the results appearing at particular orders of δ. An attempt to
present such arguments is given below.

In contrast to the non-rotating problem, the leading-order, O(δ0), value of the
Rayleigh number for the onset of infinitesimal convection in the rotating mushy
layer is no longer constant but depends on the value of the Taylor number T. As
expected, the leading-order effect of T is to increase R0c and therefore to stabilize
the system, as can be deduced from equation (3.4a). The physical explanation for
this can be found, for example, in the equation for a stream function of the flow
in the (x̄, z̄)-plane, ∂χ1/∂x̄. Specifically, taking the ȳ-component of the curl of the
perturbation momentum equation, we find that at O(ε0)

∇2 ∂χ1

∂x̄
= R0

∂θ1

∂x̄
+
√T∂v1

∂z̄
. (4.3)

The rotation of the system introduces the Coriolis force and a ‘solutal wind’ com-
ponent is generated. The solutal wind field is an analogue of the thermal wind field
which is a familiar concept in geophysical problems. Here, it describes a balance
between a horizontal gradient of the concentration field and a vertical shear of the
flow field component v1 (the so-called zonal velocity) normal to the gradient of the
concentration field. In equation (4.3), this balance is given by the terms appearing
on the right-hand side. Obviously, the balance is not complete because a third term,
the viscous dissipation in the porous medium, is also present. However, the inhibition
of convection is, to the order shown, clearly traceable to the solutal wind because a
good part of the force which releases potential energy is balanced by the rotational
constraint which is energetically inactive. The larger the rotation rate, the larger the
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zonal velocity. Hence, less potential energy is released for a given horizontal gradient
of the concentration field. Such behaviour is analogous to the linear aspects of the
stability problem studied in relation to a steady Boussinesq Bénard convection in a
rotating fluid layer (see e.g. Chandrasekhar 1961).

The asymptotic nature of the present model is such that it allows the physical
effects inherent in the mushy layer to be incorporated in the analysis as perturbations
to the near-eutectic approximation of the system. These physical effects include the
interaction between flow field and temperature (or, equivalently, composition) due
to the dependence of permeability on the local solid fraction, and the interaction
of temperature and local solid fraction due to the local release of latent heat and
solvent as the local freezing occurs. Even in the linear regime the nature of these
physical effects can be, as we shall see, crucially altered by the inclusion of additional
physical effects associated with the imposed rotational constraint. This is indicated
by the fact that some of the functions ofT appearing in (3.8) and (3.10a) can change
sign, and therefore reversals in the dependences of the linear Rayleigh number on the
corresponding system control parameters can become possible.

For the remainder of the discussion of linear stability results, we restrict ourselves
to discuss only the first-order correction term R1δ given by (3.8). In discussing the
effect of variations in the Stefan number St on the linear Rayleigh number, one might
expect that the destabilizing effect associated with increasing St, which is known to be
the case in the non-rotating problem, will be suppressed by the presence of rotation,
owing to its general constraining effect upon the convection. However, according to
(3.8), the Stefan number St appears in combination with the function of the Taylor
number T which is both positive and monotonically increasing as T increases. For
a positive value of T, this implies that the linear Rayleigh number decreases more
rapidly with increasing Stefan number St than it would in the non-rotating system.
In other words, the effect of T is to amplify the physical effect of varying St.

A more dramatic effect of the presence of rotational constraint in the system
appears in connection with the effect upon the linear Rayleigh number of varying
the permeability coefficient K1. In particular, we find that the stabilizing effect of
increasing K1 is now constrained to the range 0 6T < 3 of Taylor numbers. When
T > 3, increasing K1, perhaps surprisingly, can no longer stabilize the system. The
following physical argument might, perhaps, provide some insight into this behaviour.
The term proportional to K1/CS in the expression (3.8) is associated with the non-
uniformity in permeability due to the O(δ1) correction to the basic-state solid fraction,
φ̄B0. To be more specific, the terms by which K1/CS enters the solvability condition
in the first order are given by

−αK1φ̄B0∇2 ∂χ1

∂x̄
and − αK1

√Tφ̄B0

∂v1

∂z̄
, (4.4)

which partly force a stream function correction ∂χ2/∂x̄ at O(ε1). The first of these
terms is associated with the ȳ-component of the local vorticity arising from the Darcy
friction at O(ε0); this term is present even if the system is not rotated. The second
term is associated with the solutal wind field generated by the rotation of the system
at O(ε0); clearly, this term has no counterpart in the non-rotating problem. Examining
these two terms, we find that the effect of the term proportional to the solutal wind
field is to offset the constraining term proportional to the ȳ-component of the local
vorticity. It is for this reason that, for a sufficiently large value of T, the system can
become more unstable as K1 increases.

A further important effect of the presence of rotational constraint is a possibility to
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alter qualitatively the dependence of the linear Rayleigh number on the compositional
ratio CS . From (3.8) it can readily be seen that the effect of variations in CS depends
on the relative strength of (2 − √T+ 1)K1 and 2

√T+ 1St. More specifically, we
find that when K1 > 2St and T < −1 + 4K2

1/(K1 + 2St)2, increasing CS leads to a
decrease in the linear Rayleigh number and therefore is destabilizing. This behaviour
is qualitatively similar to that in the non-rotating case when K1 > 2St. However, once
T > −1+4K2

1/(K1 +2St)2, keeping K1 > 2St, the effect of increasing CS is stabilizing.
Finally, if K1 is decreased through 2St, the result identified in the non-rotating case
qualitatively holds true.

4.1.2. Weakly nonlinear solutions

We consider further the case where ε is non-zero. Note that ε has been introduced
as the perturbation parameter defined by (3.1e) and represents the small but finite
amplitude of the perturbation variables according to (2.9c)–(2.9f).

When the Taylor number T is set equal to zero, we can find from (3.10b) and
(3.11) that the finite-amplitude correction term R2ε takes the value

R2ε =
π3

4
− π3

2

K1

CS
− 8π3

3

(
K1

CS

)2

+
11π3

4

K2

C2
S

. (4.5)

This expression agrees with the results of Amberg & Homsy (1993) (see their equation
(3.5c) with constants h, k, l and m given numerically in table 1 of their paper). In
order for a later comparison with our result for R2ε in the rotating system to be
clearer, it is helpful to review the basic properties of (4.5) as discussed by Amberg
& Homsy. When K1 = K2 = 0, the expression (4.5) becomes R2ε = π3/4 so that the
bifurcation is always supercritical. This situation corresponds to the finite-amplitude
convection in a passive porous medium with constant permeability studied by Palm
et al. (1972). When the permeability variations with the local solid fraction are taken
into account, the subcritical bifurcation to convection in the form of two-dimensional
simple rolls may occur. In particular, when K1 is assumed to be non-zero and K2 is,
for simplicity, set equal to zero, a critical value of the parameter combination K1/CS
can be identified, namely K1/CS ≈ 0.226, above which the bifurcation is subcritical
and below which the bifurcation is supercritical. For a positive value of K2, which is
appropriate for a permeability function of the kind proposed by Worster (1992), the
last term in (4.5) is positive. Therefore, for fixed values of K1 and CS , the increasing
K2 has the effect of increasing the tendency towards the supercritical bifurcation to
rolls.

In the rotating case, T > 0, substituting K1 = K2 = 0 in (3.10b) yields

R2ε =
π3

16
(
√T+ 1 + 1)2, (4.6)

which indicates the supercriticality of the bifurcation, regardless of the value of T.
This agrees with the results of weakly nonlinear analysis for the rotating convection
in a passive porous layer by Vadasz (1998a).

Not restricted by considering particular values of the control parameters, the
results represented by equations (3.10b) and (3.11) correspond to the onset of finite-
amplitude convection in the rotating mushy layer. Nevertheless, the case of particular
simplicity which throws some light on the mechanism by which the rotation controls
the subcritical bifurcation to oblique rolls can be obtained by keeping K2 = 0 in
(3.10b). In this case, R2ε depends on both the simple parameter combination K1/CS
and Taylor number T only. A boundary marking the transition from subcritical
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Figure 2. Transition boundary from subcritical to supercritical oblique rolls as a function of the
Taylor numberT and the parameter combination K1/CS for fixed K2 = 0. The solid curve separates
the regions where the subcritical (R2ε < 0) and supercritical (R2ε > 0) oblique rolls are predicted.
Within the range 0 6 T < TU , where the upper bound TU is calculated numerically to give
2.945 . . . , the solid curve corresponds to the analytical expression (4.7). Once T attains the value
TU , the transition boundary continues to be represented by the vertical solid line starting at the
point (TU, (K1/CS )U) ≈ (2.945, 2.956).

to supercritical oblique rolls in the parameter space (T, K1/CS ) is shown in fig-
ure 2. This boundary is determined by the condition for vertical bifurcation, i.e.
R2ε = 0. If 0 6 T < TU , where the upper bound TU on T may be readily com-
puted to give 2.945 . . ., we find that this boundary is given by the following explicit
analytical formula:

K1

CS
= 3[−12(

√T+ 1 + 1)− 9T(
√T+ 1 + 2) + 3T2(

√T+ 1− 2) +
√
D]

×[384(
√T+ 1 + 1) + 48T(7

√T+ 1 + 11)

−3T2(24
√T+ 1− 5)−T3(16

√T+ 1 + 113)]−1, (4.7)

where

D = 3360(
√T+ 1 + 1) + 120T(79

√T+ 1 + 93) +T2(8328
√T+ 1 + 12657)

+3T3(466
√T+ 1 + 1541)−T4(11000

√T+ 1 + 917)

−5T5(58
√T+ 1 + 143)− 32T6. (4.8)

Once the value TU is reached, the transition boundary is found to be invariant as
the parameter combination K1/CS changes so that it continues as the vertical line
starting at a point (TU, (K1/CS )U) ≈ (2.945, 2.956). This upper part of the transition
boundary is also shown in figure 2. Note that whenT = 0, the critical value of K1/CS
becomes (

√
105−3)/32 ≈ 0.226 which corresponds to the critical value obtained from

the non-rotating theory.
In interpreting the result displayed in figure 2, we first note that the possibility of

finite-amplitude convecting states in the rotating mushy layer is brought about by the
same particular physical effect which gave rise to the finite-amplitude motions in the
non-rotating system studied by Amberg & Homsy (1993). In fact, they are both due
to the term proportional to K1/CS , namely the nonlinear variations of permeability
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((h, K1 / CS) for R2ε < 0)

Rlinear RlinearR R

ε ε(a) (b)

((h, K1 / CS) for R2ε >0)

Figure 3. Bifurcation diagram for two-dimensional oblique rolls. The amplitude of the weakly
nonlinear perturbations, ε, is plotted vs. Rayleigh number, R, for two cases. The value Rlinear

corresponds to the linear critical Rayleigh number given by Rlinear = R 0c + δR1δ + O(δ2). Solid
and dashed curves represent the presumed stable and unstable portions of the solution branches,
respectively (‘presumed’ since an issue of stability is not explicitly pursued here). (a) The parameter
pair (T, K1/CS ) corresponds to initially subcritically bifurcating oblique rolls with K2 = 0, and (b)
(T, K1/CS ) corresponds to initially supercritically bifurcating oblique rolls with K2 = 0 (cf. figure 2).

with the leading-order perturbation to the basic-state solid fraction. In the rotating
system, in addition, there is an important physical effect which effectively controls the
presence of the subcritical bifurcation, as indicated by figure 2. This stabilizing effect
of rotation at finite amplitudes is caused by the Coriolis force which counteracts
the destabilizing effect associated with the nonlinear permeability variations. This
phenomenon is, in a sense, opposite to the alignment process suggested by Veronis
(1959) in the context of steady rotating Boussinesq Bénard convection, in which the
Coriolis force counteracts the stabilizing effect of the nonlinear momentum advection
term.

Figure 3 shows a schematic bifurcation diagram for two-dimensional oblique rolls.
In this figure, the amplitude of the weakly nonlinear solutions, ε, is plotted vs.
Rayleigh number, R. The diagram is shown for two cases of the parameter pair
(T, K1/CS ), corresponding to initially subcritically (figure 3a) and supercritically
(figure 3b) bifurcating oblique rolls with K2 = 0 (cf. figure 2).

The term proportional to K2 in the expression (3.10b) is associated with the
second-order non-uniformity in permeability due to the basic-state solid fraction
and its perturbations. For T = (323 + 15

√
617)/98 ≈ 7.098, this term is zero and

therefore the nature of the bifurcation is quite insensitive to the quadratic measure
of permeability variations. For values of T smaller (larger) than this value the term
involving K2 is positive (negative), thus increasing the tendency towards supercritical
(subcritical) bifurcation. An interesting result that emerges from this is that oblique
rolls can be subcritically bifurcating in the rotating system even when the linear
permeability variations with the perturbation to the solid fraction are excluded.

Based on Darcy’s equation to model the fluid flow, the present model of the mushy
layer ceases to be valid when it predicts negative solid fraction. Following Amberg
& Homsy (1993), we equate the basic-state solid fraction with its perturbation (3.2b)
and identify the perturbation amplitude

εmax(T) =
δ

2π(
√T+ 1 + 1)

+ O(δ2), (4.9)
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which, for a given value of δ, gives us the maximum allowed value of ε for the
validity of the model. It is important to note that the particular form of εmax

depends on the normalization condition imposed in the linear stability problem. In
the present analysis, we have used the normalization in which the maximum value of
the eigenfunction representing perturbation to the thermal field is equal to unity.

4.1.3. Structure of the weakly nonlinear solutions

In this section, we examine the effect of rotation on the structure of finite-amplitude
two-dimensional solutions. This effect can be appropriately appreciated in terms of
the vertical and horizontal averages of perturbation fields,

〈f(x̄, z̄)〉z̄ =

∫ 1

0

f(x̄, z̄) dz̄, (4.10a)

〈f(x̄, z̄)〉x̄ =
2

λc

∫ λc/2

0

f(x̄, z̄) dx̄, (4.10b)

respectively, where f(x̄, z̄) denotes a particular perturbation quantity and λc is the
wavelength of the perturbation. The corresponding results presented below provide
useful information about the way in which the rotation manifests itself in the flow.

In all the calculations, we use the illustrative set of parameter values St = 1, CS = 1,
K2 = 0 and δ = 0.3. We set the linear measure of permeability variations K1 = 3
and consider the values of T below TU ≈ 2.945. Accordingly, the results presented
correspond to subcritically bifurcating convecting states (see figure 2). We take the
perturbation amplitude ε = 0.0155 throughout, this being close to the critical value
for breakdown of the model when T = 2.9, εmax(2.9) ≈ 0.016.

The vertically averaged perturbation quantities are plotted as functions of the
horizontal coordinate x̄ in figure 4 for different values of T. Each graph has been
displayed in a convection cell corresponding to the interval 0 6 x̄ 6 λc(T)/2. Notice
that graphs in (a), (b) and (d) are symmetric, while graphs in (c) are antisymmetric
with respect to the line x̄ = 0. Figure 4(a), which shows the plots for the vertically

averaged perturbation to the solid fraction, 〈εφ̂〉z̄ , should be compared with figure 4(b),
which shows the profiles for the vertical flow averaged over the depth of the layer,
〈w〉z̄ . Note that positive solid-fraction perturbations show where the solidification is
enhanced, while the negative perturbations correspond to the local melting of the
dendrites. For a fixed value of T, we see that there is a localization of the upflow
into the relatively narrow region in the vicinity of x̄ = 0, where the corresponding
solid-fraction perturbation leads to a substantial reduction in the basic-state solid
fraction. Note also that for the non-rotating case, the minimum value of the solid
fraction is almost zero, suggesting the formation of a chimney; for the parameter
values used, this minimum is attained at a certain vertical level within the mushy layer.
The notable feature of the plots shown in figure 4(a) is the behaviour as the Taylor

number varies: asT is increased, the magnitude of 〈εφ̂〉z̄ decreases. This is indicative
of a tendency to suppress the formation of the chimney in the region of upflow in
the rotating mushy layer. The explanation for this is that the rotational constraint
tends to counter a positive nonlinear feedback, which is known to be responsible
for the formation of chimneys in the non-rotating system (e.g. Worster 1992; Tait
& Jaupart 1992); as T increases, a fluid parcel displaced upwards becomes more
and more confined to a plane transverse to the angular velocity vector, and therefore
it becomes surrounded by both chemically and thermally more and more similar
surroundings. As a result, with the relatively large thermal diffusivity compared to the
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Figure 4. The vertically averaged perturbation quantities as functions of the horizontal coordinate
x̄ for different values of the Taylor number T. In each case St = 1, CS = 1, K1 = 3, K2 = 0,
δ = 0.3 and ε = 0.0155. The short-dashed, long-dashed, and solid lines correspond to the values
T = 0, 1 and 2.9, respectively. The parameter values used correspond to subcritically bifurcating
convecting states. Each graph has been plotted in a convection cell corresponding to the interval
0 6 x̄ 6 λc(T)/2, where λc(T) = 2π/kc(T). (a) 〈εφ̂〉z̄ vs. x̄, (b) 〈w〉z̄ vs. x̄, (c) 〈v〉z̄ vs. x̄, (d) 〈εθ̂〉z̄ vs.
x̄. Notice that graphs in (a), (b) and (d) are symmetric, while graphs in (c) are antisymmetric with
respect to the line x̄ = 0.

solute diffusivity, the parcel does not need to adapt to its new chemical surroundings
by as much dissolution of surrounding crystals for the same perturbation as it does
in the non-rotating system. Notice, from the plots in figure 4(b), that as T increases,
the amplitude of 〈w〉z̄ in this dynamic regime increases. The corresponding change in
the magnitude of vertically averaged zonal flow, 〈v〉z̄ , is, however, much greater (see
figure 4c). The flow therefore becomes dominated by rotation.

Figure 4(c) shows the profiles for the vertically averaged zonal velocity, 〈v〉z̄ . We
first note that the zonal flow does not appear in the non-rotating case, so that 〈v〉z̄
is zero when T = 0. Also note that 〈v〉z̄ vanishes at the marginal stability limit; that
is, the part v1 of v which contributes to the solutal wind makes no contribution to
〈v〉z̄ . Therefore, the quantity 〈v〉z̄ represents essentially a measure of a part of zonal
flow which is produced by the nonlinear interaction between the local solid fraction,
and hence the permeability, and convection. The characteristic property common to
both profiles shown in figure 4(c) is a relatively strong asymmetry, with the field
concentrated within the right, rather than the left half-cell. This asymmetry is perhaps
more pronounced as T increases. Notice also that the zonal flow is predominantly
negative throughout each of the cells corresponding to different values of T.

Finally, in figure 4(d), we show the plots for the perturbation to the thermal field

averaged over the depth of the layer, 〈εθ̂〉z̄ . For a fixed value of T, by comparing
the plots in figure 4(d) with the corresponding plots in figure 4(b), it can be clearly
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Figure 5. The horizontally averaged perturbation quantities as functions of height z̄ for different
values of the Taylor number T. The parameter values are the same as for figure 4. (a) 〈εφ̂〉x̄ vs. z̄,
(b) 〈v〉x̄ vs. z̄, (c) 〈εθ̂〉x̄ vs. z̄.

seen that the rising fluid is relatively cold and depleted of solute. Notice also that
the thermal-field perturbations are considerably smaller in amplitude than the other
disturbances for the same value of T. The increase in T has the effect of decreasing
the magnitude of the cold anomaly (solute depleted) within the left half-cell; the
warm anomaly (solute rich) within the right half-cell remains almost unaltered. This
asymmetric pattern of behaviour is akin to that in figure 4(c) and results because as
T increases, the strength of nonlinearly generated zonal flow increases, which allows
an advection of more solute along the axis of convection roll.

The horizontal averages of perturbation fields as functions of height z̄ are displayed
in figure 5 for the same set of values of T as in figure 4. For a given value of T, the

solid fraction perturbation, 〈εφ̂〉x̄, exhibits purely sinusoidal variation, with negative
values throughout the depth and the peak at the mid-depth of the layer (figure 5a).
Recall that in the absence of convection the leading-order solid-fraction distribution

is linear in z̄. Hence, 〈εφ̂〉x̄ reflects the distortion of the mean solid fraction profile
caused by nonlinear processes. Although the magnitude of the perturbation increases
with T, close inspection of the numerical results shows that the change in amplitude

of 〈εφ̂〉x̄ corresponding to T = 0 and 2.9 is less than about 10% of that for 〈εφ̂〉z̄
(see figure 4a). Correspondingly, the dynamical effect of convection, influenced by
rotation, to inhibit the dissolution of dendrites in the regions of upflow is much
stronger than to enhance the dissolution in the mid-depth region of the mushy layer.

In the nonlinear regime, the form of the vertical flow is such that 〈w〉x̄ = 0; this
feature of the flow is also independent of the rotation of the system.

Similarly as in the case of solid fraction, in the conductive state, the temperature
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distribution varies, to the leading order, linearly with z̄. Thus, 〈εθ̂〉x̄ shown in figure 5(c)
measures the nonlinear effects on the mean temperature field. The variations are purely
sinusoidal and reflect the upward convection of relatively cold fluid, and downward
convection of relatively warm fluid. As T is increased, both anomalies grow in
amplitude; this effect is localized approximately in the regions where the zonal flow

is enhanced (see figure 5b). The change in the amplitude of 〈εθ̂〉x̄ corresponding

to T = 0 and 2.9 is, however, only about 3% of that for 〈εθ̂〉z̄ (see figure 4d). The
horizontally averaged thermal field therefore differs only slightly from its non-rotating
counterpart.

4.2. Three-dimensional convection with hexagonal symmetry

We now turn our attention to discussing three-dimensional hexagonal solutions pre-
sented in § 3.2.

4.2.1. Linear stability results

First, we set the perturbation amplitude ε = 0, which recovers the linear stability
results. The Rayleigh number for the linear stability is, correct to O(δ1), identical
to that for rolls, and therefore it does not need a separate discussion; the reader
is referred to the previous subsection where the discussion of its properties can be
found.

4.2.2. Weakly nonlinear solutions

We next consider the case where the perturbation amplitude ε is non-zero. Since
the first finite-amplitude correction term in the expression (3.17) is linearly dependent
on ε, in contrast to the quadratic proportionality in the case of rolls, the bifurcation
to the hexagonal convection is, in general, transcritical.

By setting T = 0, the expression (3.16) becomes

R1ε = −3π2

2

K1

CS
, (4.11)

which corresponds to that in the analysis of hexagons in Amberg & Homsy (1993).
Note that the sense of the flow is determined by the sign of the perturbation amplitude
ε; upflow at the centres of regular hexagons corresponds to ε > 0 and downflow to
ε < 0. Since both K1 and CS are always positive, the nature of the transcritical
bifurcation to regular hexagons cannot change in the non-rotating system. That is,
more specifically, the bifurcation to hexagons with upflow at the centres is always
subcritical (Amberg & Homsy 1993; but cf. Anderson & Worster 1995).

In the rotating system (T > 0), the nature of the transcritical bifurcation to
convection with hexagonal symmetry can vary, depending crucially on the value of
the Taylor number T. This is clearly suggested by the fact that a particular function
of T appearing in association with the parameter combination K1/CS in equation
(3.16) is monotonically increasing through a zero value as T increases. Specifically,
we find that when T < 3 + 2

√
3 ≈ 6.464, the bifurcation to convection with upflow

at the centres of distorted hexagons is subcritical, whereas when

T > 3 + 2
√

3, (4.12)

supercritical bifurcation arises.
Figure 6 displays a bifurcation diagram for three-dimensional distorted hexagons.

The diagram is shown for two values ofT, corresponding to initially subcritically (the
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Figure 6. Bifurcation diagram for three-dimensional distorted hexagons. As in figure 3, the amplitude
of the nonlinear perturbations, ε, is plotted vs. Rayleigh number, R, for two cases. The value Rlinear

corresponds to the linear critical Rayleigh number given by Rlinear = R 0c + δR1δ + O(δ2). Solid
and dashed curves represent the presumed stable and unstable portions of the solution branches,
respectively. The portions of the branches with ε > 0 (ε < 0) correspond to hexagons with upflow

(downflow) at the centres. (a) The case when T < 3 + 2
√

3, and (b) the case when T > 3 + 2
√

3.
Notice that it is the rotational constraint of the system which allows the possibility of initially
supercritical up-hexagons.

case when T < 3 + 2
√

3, figure 6a) and supercritically (the case when T > 3 + 2
√

3,
figure 6b) bifurcating distorted hexagons with upflow at their centres.

The same kind of qualitative argument to explain the effect of rotation at finite
amplitudes as that presented in the previous subsection on rolls can be used in
connection with hexagons. Thus it is possible that hexagonal convection with finite
amplitude may exist at supercritical values of the Rayleigh number because the
Coriolis force may balance the destabilizing effect associated with the nonlinear
effective viscous dissipation in the porous medium.

We close the discussion of the solvability condition for the hexagonal solution by
identifying the maximum allowed value of the perturbation amplitude ε for the theory
to be valid. Again, as in the case of oblique rolls, we compare the basic-state solid
fraction with its perturbation given by (3.13b) and find

εmax(T) =
δ

6π(
√T+ 1 + 1)

+ O(δ2), (4.13)

which is 1/3 times that required for rolls.

4.3. Relationship to experiments

The particular phenomenon we are concerned with in this paper occurs when con-
vection in the mushy layer does not become too vigorous. Therefore, although the
results of this paper are indicative of a tendency to suppress the local remelting of
dendrites in the rotating mushy layer, no such conclusion about the effect of rotation
can clearly be inferred from the present study for convective states in which the
chimneys are fully developed. Note that in the model we analyse here, and in all the
linear and weakly nonlinear analyses to date, there is no chimney per se; just a region
of reduced local solid fraction at the upflowing centres of convection cells.

Only one experimental study has been reported relating to weak convection in
a non-rotating mushy layer (Tait, Jahrling & Jaupart 1992). By slow cooling and
solidifying of an ammonium chloride solution, they were able to observe the planform
of chimney convection near the onset of critical convection. The planform was
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statistically closest to a hexagonal pattern with upflow along the edges and downflow
at the centres of hexagons. This observed phenomenon is in contrast with theoretical
results of Amberg & Homsy (1993), in which it was anticipated that hexagons
with upflow at the centres would be stable. Anderson & Worster (1995) gave some
possible explanations for this discrepancy by studying the additional physical effects
and interactions within the model of Amberg & Homsy. Specifically, their results
suggested that, under certain conditions, hexagons with downflow at the centres can
be stable and first to occur, as observed in the experiments by Tait et al. (1992).

Although the plausibility in relation to existing experimental results of the mushy
layer model proposed by Amberg & Homsy (1993), and used also in the present
analysis, is restricted for a variety of reasons, including the dynamical isolation of the
mushy layer from the overlying liquid region and the prescribed constrained growth
at constant solidification rate, the qualitative rather than quantitative predictions
associated with this model are of value, as discussed by Anderson & Worster (1995,
1996).

To date, all reported experimental observations of rotating convection in mushy
layers (Sample & Hellawell 1982, 1984; Claßen et al. 1999) have concentrated on
strongly nonlinear convection with fully developed chimneys, rather than the weak
convection that we require, so the effects of rotation of the type described in this
paper, most notably the suppression of the nascent chimneys in the interior of the
mushy layer, have not been reported. It is only in the near-critical situation that the
qualitative results of the present study should be robust and experimentally observed.
Clearly, more detailed and careful experiments, similar to those by Tait et al. (1992),
in which disturbances are controlled using a much lower cooling rate than in the
experiments by Sample & Hellawell (1982, 1984) and Claßen et al. (1999), are needed
to make specific comparisons with predictions resulting from the present study.

In general, an O(1) value for the square root of the Taylor number is required in
order for the qualitative effects of rotation revealed by our analysis to be present in an
experimental situation. For the ammonium-chloride–water system, we have already
shown that this limiting case can be achieved by values of the angular velocity about
2 rad s−1, which are quite accessible in the laboratory. In metal alloys the typical
values of permeability are generally much lower than the values in aqueous solutions
of ammonium chloride; for the Pb–Sn alloy system, for example, if we assume
Π(0) = 1.6 × 10−5 cm2 and ν = 0.25 × 10−2 cm2 s−1 (Sarazin & Hellawell 1988) then
an angular velocity of about 80 rad s−1 is required in order for

√T = O(1). Hence,
the metal alloys (under laboratory conditions) may not be a convenient candidate to
exhibit the effects predicted by the present work.

However, the study of rotating convection in mushy layers presented in this paper
is not motivated only by possible practical applications in industrial casting processes.
A further motivation is the solidification and convective dynamics of the Earth’s core
(Loper & Roberts 1981; Fearn, Loper & Roberts 1981; Fearn 1998). It is thought
that the Earth’s core is an iron-rich alloy of iron and a light constituent, perhaps
sulphur or oxygen. The thermodynamic conditions are such that a freezing interface
between the solid inner core and the liquid outer core is not sharp; the inner core may
grow dendritically, and the mushy state may extend to the Earth’s centre (Fearn et al.
1981). Using an estimate of the dendrite spacing in the core deduced from meteorites
(Esbensen & Buchwald 1982), Bergman & Fearn (1994) estimated the permeability
to be 1 m2. This can result in a large value of the Taylor number appropriate to
the Earth’s inner core; assuming a fluid molecular viscosity of 10−6 m2 s−1 (Stacey
1992) and an angular velocity of 7× 10−5 rad s−1, we estimate the value of

√T to be
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larger than the O(1) value required in the present analysis by two orders of magnitude.
Therefore, it is of considerable geophysical interest to investigate the effects of rotation
on the convective flow generated within the mushy zone at the inner-core boundary,
although it should be emphasized that this large-scale solidifying system may be far
from eutectic, contrary to what is assumed herein.

5. Conclusion
In this contribution, we have analysed the effects of an imposed rotational constraint

on the onset of instability to infinitesimal steady convection as well as on the onset
of finite-amplitude steady motions in a rotating mushy layer. We have used a simple
physical model of the mushy layer proposed by Amberg & Homsy (1993) in which
the mushy layer is physically isolated from the underlying solid and overlying liquid
regions. We have extended this original mushy-layer model to the case in which the
system is in a state of uniform rotation about the vertical.

Perhaps the most important results in our linear stability investigation are the two
following. First, we have found that the increase in the Taylor number T, which is
proportional to the uniform angular velocity of the system, tends primarily to increase
the linear, critical Rayleigh number, and therefore causes the system to be more stable.
This is because the rotation of the system introduces a solutal wind balance in which
the horizontal concentration gradient can be, at least partly, balanced by the vertical
shear of the zonal component of the flow. In terms of energy, the destabilizing
potential energy available to a disturbed fluid element partially contributes to the
zonal velocity field of that element. This becomes more and more pronounced as T
increases and is the principal reason for the inhibition of compositional convection
in the rotating mushy layer. Such behaviour is similar to the linear aspects of the
stability problem of steady Boussinesq Bénard convection in a rotating fluid layer.

Second, in addition to its more familiar stabilizing role, the presence of the rotational
constraint can be accompanied by a qualitative change in the physical effects which
are intrinsic to the mushy layer and which are included in the analysis as perturbations
to the near-eutectic approximation of the system. In particular, analysing the first-
order correction to the linear, critical Rayleigh number, we have discovered that
the stabilizing effect of increasing the linear measure of permeability variations, K1,
is constrained to the range 0 6 T < 3 of Taylor numbers. Once T is increased
through this range, increasing K1 can no longer stabilize the system. This striking
and unsuspected feature of the rotating, solidifying, reactive porous medium can be
traced to the momentum balance appearing at O(ε1). Physically, as the permeability
coefficient K1 increases, the resistance to flow increases correspondingly, leading to
a decrease in the solutal wind flow for a given value of the Taylor number T and
therefore making the system linearly more unstable.

The analysis of this paper has also revealed interesting and important results
regarding the nonlinear aspects of rotating convection in the mushy layer. In par-
ticular, we have identified steady solutions to our weakly nonlinear rotating system
in the form of two-dimensional oblique rolls and of three-dimensional convection
with hexagonal symmetry. The two-dimensional oblique rolls were found to be either
subcritically or supercritically bifurcating; an analytical expression for the transition
from subcritical to supercritical rolls has been obtained in terms of the parameter
combination K1/CS vs. Taylor number T provided K2 = 0. Three-dimensional con-
vection with hexagonal symmetry was found to be, in general, transcritical. Note that
in the non-rotating system studied by Amberg & Homsy (1993) the regular hexagons
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were also transcritically bifurcating. Moreover, the nature of this bifurcation cannot
change in the non-rotating system. In the rotating system we have been concerned
with here, however, the nature of the transcritical bifurcation can vary, depending
crucially on the value of the Taylor number T. As a result, both subcritical and
supercritical bifurcations with upflow at the centres of distorted hexagons can be-
come possible. According to the results of our finite-amplitude study, the rotational
constraint imposed on the solidifying system minimizes the tendency to subcriticality
of both the bifurcation to oblique rolls and distorted hexagons with upflow at the
centres, and hence presumably causes these states to become nonlinearly more stable.

It should, of course, be remembered that the results of the present analysis cannot
be extended right up to

√T� 1. We expect, however, that the asymptotic limit that
we have chosen in the present work (δ → 0,

√T = O(1)) is representative in all
qualitative aspects regarding the nature of the onset of infinitesimal instability as well
as finite-amplitude convection in the rotating mushy layer.

We have made preliminary calculations using a model of a mushy layer that
includes the variation of the local solid fraction in the Coriolis term (cf. the definition
of the Taylor number (2.5d)) to test the robustness of the results revealed by the
present analysis. Specifically, we calculated the parametric trends in terms of the
boundary between subcritical and supercritical bifurcations. The results indicate that,
although the parametric trends quantitatively differ from those in the present paper
(i.e. figure 2 and equation (4.12)), they have the same topology and also give way
to supercritically bifurcating oblique rolls and up-hexagons at larger values of the
Taylor number T – the result which is perhaps the most important consequence of
the present study.

Although the quantitative conclusions of the present study are not directly appli-
cable to the experimental situation, the qualitative results we have discovered are of
value. Unfortunately, unlike for the non-rotating case, there exists, to our knowledge,
no reported experimental observation for the onset of near-critical convection in the
rotating mushy layer, to which the details of the present model near the bifurcation
point could be compared. It is hoped therefore that the richness of predictions result-
ing from the present study might provide a stimulation for experimental verification
of its range of validity.

This work was improved during my visit to DAMTP, University of Cambridge. I
am very indebted to M. G. Worster for his hospitality, and for numerous stimulating
discussions during this visit. I am grateful to D. M. Anderson for helpful comments
on an earlier draft of this paper. Thanks are also due to J. Bod’a for introducing
me to the problem of convection in mushy layers, and S. Ševčı́k who continually
encouraged me to complete this investigation.

Appendix
Writing, for brevity

l(T) = 1 + exp [π(T+
√T+ 1 + 2)1/2(T+ 1)−1/4], (A 1a)

m(T) =
192

π
l(T)[−2 + l(T)]−1T2(T+ 1)3/4(

√T+ 1 + 1)3(T+
√T+ 1 + 2)1/2,

(A 1b)

1/n(T) = 96π
√T+ 1(

√T+ 1 + 1)12, (A 1c)
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the expressions for the functions of Taylor number T appearing in equation (3.10a)
have the following forms:

a(T) = − 1

12π

6T+ [T(3 + 2π2)− 4π2]
√T+ 1− 4π2

√T+ 1(
√T+ 1 + 1)

, (A 2a)

b(T) =

(
π

4
+

2

π

)
(
√T+ 1 + 1), (A 2b)

c(T) = −(T+ 1)−1n(T){(T+ 3)2m(T) +T8(10π2 + 21)

+T7[2π2(67
√T+ 1 + 448) + 3(87

√T+ 1 + 518)]

+T6[2π2(1957
√T+ 1 + 6573) + 3(2067

√T+ 1 + 6399)]

+4T5[π2(8055
√T+ 1 + 18037) + 12(897

√T+ 1 + 1891)]

+16T4[π2(6907
√T+ 1 + 11507) + 3(2679

√T+ 1 + 4331)]

+64T3[π2(2699
√T+ 1 + 3517) + 6(485

√T+ 1 + 637)]

+2304T2[46π2(
√T+ 1 + 1) + (53

√T+ 1 + 57)]

+1024T[−5π2(
√T+ 1 + 3) + 3(5

√T+ 1 + 3)]

+4096[−5π2(
√T+ 1 + 1)− 3(

√T+ 1 + 1)]}, (A 2c)

d(T) = −π
8

(
√T+ 1 + 1)(

√T+ 1− 2)√T+ 1
, (A 2d)

e(T) = n(T){(T+ 1)m(T) +T7(π2 − 3)

+T6[π2(17
√T+ 1 + 129)− 3(13

√T+ 1 + 113)]

+16T5[19π2(2
√T+ 1 + 7)− 6(17

√T+ 1 + 58)]

+16T4[π2(337
√T+ 1 + 769)− 3(281

√T+ 1 + 613)]

+64T3[π2(303
√T+ 1 + 517)− 6(113

√T+ 1 + 185)]

+768T2[π2(43
√T+ 1 + 59)− (85

√T+ 1 + 113)]

+1024T[2π2(13
√T+ 1 + 15)− 3(15

√T+ 1 + 17)]

+4096[2π2(
√T+ 1 + 1)− 3(

√T+ 1 + 1)]}, (A 2e)

f(T) =
3

8
π(
√T+ 1 + 1), (A 2f)

h(T) = −2n(T){(T+ 3)m(T) +T7(π2 − 9)

+T6[π2(11
√T+ 1 + 51)− 3(33

√T+ 1 + 197)]

+8T5[2π2(7
√T+ 1 + 2)− 3(85

√T+ 1 + 207)]

+16T4[−π2(53
√T+ 1 + 213)− 3(143

√T+ 1 + 131)]

+64T3[−π2(131
√T+ 1 + 265) + 6(25

√T+ 1 + 89)]

+256T2[−5π2(17
√T+ 1 + 25) + 3(87

√T+ 1 + 139)]

+1024T[−2π2(11
√T+ 1 + 13) + 3(29

√T+ 1 + 35)]

+4096[−2π2(
√T+ 1 + 1) + 9(

√T+ 1 + 1)]}. (A 2g)
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